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also shows, by comparing columns 3 and 4, that only two optimiza-

tionswithp = 2of theg algorithm yield, for engineering purposes,

essentially equal-ripple responses. For a 50-dB specification the

final solution has characteristic impedances’ of 0.606595, 0.303547,

0.722287, 0.235183, 0.722287, 0.303547, and O.606595withdevi-

ationsfrom specifications of –0.028245 (equal toatleast 5 figures).

CONCLUSIONS

Two new algorithms and related results for the least pth approach

to minimax design have been presented. Documented computer pro-

grams are available from J. W. Bandler at a nominal charge. A more

detailed presentation of thk material is also available [11].
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I Actually symmetrical to at least the accuracy of the C DC 6400.

With the integralization of electric devices and the appearance

of high-power semiconductor devices, miniaturization of transmission

systems ,has become necessary. In dealing with such systems, it is

of considerable importance to confirm the rise and distribution of

temperatures appearing in the operation of the devices in as much

as they are in a risk of thermal destruction and thermal degenera-

tion. For the analysis of these problems, some theoretical methods

and numerical procedures have been proposed. There are, however,

various difficulties in the analysis of such theoretical methods.

In the present analysis, the finite element method based on the

variational method was used because of its advantage in dealing

with the complicated contours as well as composite media. In rela-

tion to the heat conduction equation in a two-dimensional case, the

functional is defined as [1]

where T is the temperature, C the heat capacity, k heat conductivity,

and q the rate of heat generation. The temperature rise and distri-

bution can be obtained by finding the function T by which the

functional x is made stationary. To carry out the preceding method,

the domain is divided into many triangular elements, x is differenti-

ated with respect to T, the derivative is set equal to zero. The

resulting equation is thus given by

where [H] is the heat conductivity matrix, [P] is the heat capacity

matrix, and {K} is a vector which expresses the distribution of heat

sources. Applying the trapezoidal approximation for the derivative

with respect to time, the following difference equation was obtained

for all nodal temperatures in a matrix form

( ) ({1 )[H] +~[P] {T}, = [P] ~ _~,+~ {T),-,,, + {K},.
t

(3)

To illustrate the correctness of the method, we emplcyed a simple

problem where heat source q ( = 100 W/cm3) distributes uniformly

in the square column of alumina with infinite leng !th under the

Newton cooling condition. The temperature rise at the center of the

column obtained by both the exact analytical solution and by the

finite element method are shown in Fig. 1, and difference between

the two methods is within one percent.

Then the temperature characteristics are calculated for striplines

with triple-layer dielectric media. The analytical model is shown in

Fig. 2 where H = W* = 0.1 cm, al = at = as = H/3, WI = 10al,

and b = 0.001 cm. For symmetry, the right half-plane is considered.

The center medium is alumina, the heat source material is copper,

and other media are glass. The respective thermal constants are

shown in Table 1. The rate of heat generation per unil t volume q is
104 W/cm’. The boundary condition at the surface where x = O is
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Absfracf—The transient temperature distributions in the cross

section of a stripline with triple-layer dielectric substrate are found

by employing the finite element method. The calculations for three

cases of different depths of center conductor considered as heat

source are shown.

For each case, the calculated temperature distributions are shown

at f, = 10 s when the temperature variation has a large gradient in

time and at the steady state.
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Fig. 1. Example 1: Geometry of the problem and the temperature rise

at center of heat source. d = 0.5 mm.
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Fig. 2. Example 2: Geometry of the problem. H = W, =0.1 cm,

al = a~ = as = H/3, WI = 10a~, 0 =0.001 cm, and D = O, a~/2, ax.

TABLE I

THERMAL CONSTANTS

Material IHeat conductivity IHeat capacity IHeat transfer
Wlcm”c J/cm3 “C coefficient w/cm2°C
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Fig. 3. Theeqnitemperature lines inasteady state with D =0.

steady state

Fig. 4. The equitemperature lines in a steady state withD =a,/Z.

nonconductive, i.e., the normal gradient of temperature is zero,

and atthe other surface, convection loss is equal to a(T — !Z’a)

where a is the heat transfer coefficient and Z’. is the ambient tern.

perature. The calculations achieved for three values of parameter

Ddepthof heat source. These values are D =0,a,/2,a,. As for the

components of [P] and {K) in (3), for better convergence of this

numerical calculation, lumped coefficients [2] are adopted instead

of the consistent coefficients used by Flatab@ [1].

The calculated results are shown in Figs. 3-9. Figs. 3–5 show equi-

temperature lines in the cross section of striplines for each value of

parameter Dinasteady state, Figs. 6–8showthesameatt= 10s.

Fig. 9 shows the temperature, rise at each center of heat sources

for t = 0-10 s.

In these three cases, temperatures at the center of the heat

source in a steady state are lower than 40”C. In these three cases,

when comparing the steady state with that at t= 10 s, in the

lower glass layers, the equitemperature linesin the former have a

Fig. 5. Theequitemperature lines inasteady etatewitih D == al.
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Fig. 6, !l?heequitemperatu relinesatt = 10swith D =0,,
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Fig. 7. Theequitemperature linesatt = 10swith D = al/2.
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Fig. S. Theequitemperatnre lines at t = 10 swith D = al.
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gentler gradient to the z axis than the latter. At the substrate edges,

the temperatures in alumina layers are higher than in the glass

layers. In the alumina layers, equitemperature lines are almost

vertical to the x axis. In the case of D = a,/2, the temperature

gradient’above theheat source isgentler than under it. These phe-

nomena are regarded as due to the thermal energy generated at

heat sources being diffused through alumina layers of high conduc-

tivity and then radiated out of the substrate.

The temperature rise at center of the heat source where the tem-

perature characteristics are remarkably affected byparameter Dis

gentler atD = al than others, and similarly the maximum temper-

ature is lower than in others, because of the dh-ect contact with

alumina of a high conductivity.’ Thus it may be said that the case

of D = al has less thermal risk than others.

To ensure the correctness of this method for numerical analysis,

the case of single-layer dielectric media whlchhas infinite width of

substrate is calculated by the finite element method with equivalent

heat transfer coefficient at the finite boundary and by the analytical

method. And both results agree very well. The band matrix method

which is well known as one of the elimination procedurw is employed

so as to reduce the computing time.

Fora detailed analysis, thedlelectric loss inthesubstrate is con.

sidered aswellas thejoule loss inthe center strip, but in the present

analysis only thejoule loss is considered for simplicity, The analysis

containing the dielectric loss and the nonlinearity of the thermal

characteristics of the media is achieved by the finite element method

in the same manner as in the preceding cases without much diffi-

culty. For nonlinear problems, it maybe useful to apply the method

for the plasticity problem in structural mechanics, e,g., the incre-

mental initial strain method.
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