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also shows, by comparing columns 3 and 4, that only two optimiza-
tions with p = 2 of the ¢ algorithm yield, for engineering purposes,
essentially equal-ripple responses. For a 50-dB specification the
final solution has characteristic impedances? of 0.606 595, 0.303 547,
0.722 287, 0.235 183, 0.722 287, 0.303 547, and 0.606 595 with devi-
ations from specifications of —0.028 245 (equal to at least 5 figures).

CONCLUSIONS

Two new algorithms and related restlts for the least pth approach
to minimax design have been presented. Documented computer pro-
grams are available from J. W. Bandler at a nominal charge. A more
detailed presentation of this material is also available [117].
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! Actually symmetrical to at least the accuracy of the CDC 6400.

Analysis of the Transient Temperature Distribution in a
Stripline with Triple-Layer Dielectric

MASAKI SASAKI, NORINOBU YOSHIDA,
ICHIRO FUKAI, mMEMBER, 1IBEE, AND JUN-ICHI FUKUOKA

Abstract—The transient temperature distributions in the cross
section of a stripline with triple-layer dielectric substrate are found
by employing the finite element method. The calculations for three
cases of different depths of center conductor considered as heat
source are shown.

For each case, the calculated temperature distributions are shown
at ¢ = 10 s when the temperature variation has a large gradient in
time and at the steady state.
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With the integralization of electric devices and the appearance
of high-power semiconductor devices, miniaturization of transtission
systems has become necessary. In dealing with such systems, it is
of considerable importance to confirm the rise and distribution of
temperatures appearing in the operation of the devices in as much
as they are in a risk of thermal destruction and thermal degenera-
tion. For the analysis of these problems, some theoretical methods
and numerical procedures have been proposed. There are, however,
various difficulties in the analysis of such theoretical methods.

In the present analysis, the finite element method based on the
variational method was used because of its advantage in dealing
with the complicated contours as well as composite media. In rela-
tion to the heat conduction equation in a two-dimensional case, the
functional is defined as [1]
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where 7T is the temperature, C the heat capacity, k heat conductivity,
and ¢ the rate of heat generation. The temperature rise and distri-
bution can be obtained by finding the function T by which the
functional x is made stationary. To carry out the preceding method,
the domain is divided into many triangular elements, x is differenti-
ated with respect to 7, the derivative is set equal to zero. The
resulting equation is thus given by
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where [ H ] is the heat conductivity matrix, [P ]1is the heat capacity
matrix, and {K} is a vector which expresses the distribution of heat
sources. Applying the trapezoidal approximation for the derivative
with respect to time, the following difference equation was obtained
for all nodal temperatures in a matrix form
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To illustrate the correctness of the method, we employed a simple
problem where heat source ¢ (=100 W/cm3) distributes uniformly
in the square column of alumina with infinite length under the
Newton cooling condition. The temperature rise at the center of the
column obtained by both the exact analytical solution and by the
finite element method are shown in Fig. 1, and difference between
the two methods is within one percent.

Then the temperature characteristics are calculated for striplines
with triple-layer dielectric media. The analytical model is shown in
Fig. 2 where H = Wy = 0.1 em, a; = as = a3 = H/8, W, = 10a,,
and b = 0.001 cm. For symmetry, the right half-plane is considered.
The center medium is alumina, the heat source material is copper,
and other media are glass. The respective thermal constants are
shown in Table I. The rate of heat generation per unit volume q is
10 W/cm3. The boundary condition at the surface where z = 0 is
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Fig. 1. Example 1: Geometry of the problem and the temperature rise

at center of heat source. d = 0.5 mm.
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Fig. 2. Example 2: Geometry of the problem. H = W: = 0.1 cm,
a1 =@ =as = H/3, Wi =10a;, b =0.001 cm, and D =0, a1/2, a..
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Fig. 4. The equitemperature lines in a steady state with D = a./2.
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nonconductive, i.e., the normal gradient of temperature is zero, . . . .
and at-the other surface, convection loss is equal to «(T — T4) Fig. 8. The equitemperature lines at ¢ = 10 8 with D = a1.
where « is the heat transfer coefficient and T, is the ambient tem-
perature. The calculation is achieved for three values of parameter
D depth of heat source. These values are D = 0,a:/2,a:. As for the.
components of [P] and {K} in (3), for better convergence of this
numerical caleulation, lumped coefficients [27] are adopted instead
of the consistent coefficients used by Flatabg [17.

The calculated results are shown in Figs. 3-9. Figs. 3-5 show equi-
temperature lines in the cross section of striplines for each value of
parameter D in a steady state. Figs. 6-8 show the same at £ = 10 s.
Fig. 9 shows the temperature rise at each center of heat sources
fort = 0-10s. ‘

In these three cases, temperatures at the center of the heat A T il
source in a steady state are lower than 40°C. In these three cases, )
when comparing the steady state with that at £ = 10 s, in the Fig. 9. The temperature rises at center of heat sources.
lower glass layers, the equitemperature lines in the former have a
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gentler gradient to the x axis than the latter. At the substrate edges,
the temperatures in alumina layers are higher than in the glass
layers. In the alumina layers, equitemperature lines are almost
vertical to the z axis. In the case of D = a:/2, the temperature
gradient above the heat source is gentler than under it. These phe-
nomena are regarded as due to the thermal energy generated at
heat sources being diffused through alumina layers of high conduc-
tivity and then radiated out of the substrate.

The temperature rise at center of the heat source where the tem-
perature characteristics are remarkably affected by parameter D is
gentler at D = a; than others, and similarly the maximum temper-
ature is lower than in others, because of the direct contact with
alumina of a high conductivity. Thus it may be said that the case
of D = @, has less thermal risk than others.

To ensure the correctness of this method for numerical analysis,
the case of single-layer dielectric media which has infinite width of
substrate is calculated by the finite element method with equivalent
heat transfer coefficient at the finite boundary and by the analytical
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method. And both results agree very well. The band matrix method
which is well known as one of the elimination procedures is employed
80 as to reduce the computing time.

For a detailed analysis, the dielectric loss in the substrate is con-~
sidered as well as the joule loss in the center strip, but in the present
analysis only the joule loss is considered for simplicity. The analysis
containing the dielectric loss and the nonlinearity of the thermal
characteristics of the media is achieved by the finite element method
in the same manner as in the preceding cases without much diffi-
culty. For nonlinear problems, it may be useful to apply the method
for the plasticity problem in structural mechanics, e.g., the incre-
mental initial strain method.
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